Long-term warming manipulations reveal complex decomposition responses across different tundra vegetation types

Author:

Björnsdóttir K.12,Barrio I.C.3,Jónsdóttir I.S.12

Affiliation:

1. Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland.

2. University Centre in Svalbard (UNIS), P.O. Box 156, N-9171 Longyearbyen, Norway.

3. Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Árleyni 22, Keldnaholt, 112 Reykjavík, Iceland.

Abstract

In a rapidly warming tundra, ecosystems will undergo major environmental changes that are predicted to significantly alter belowground processes such as decomposition of plant litter. Making use of International Tundra Experiment sites (ITEX), which were established approximately two decades ago, we examined the long-term impacts of warming on decomposition. We used the Tea Bag Index (TBI) methodology to measure the annual mass loss (%) of two tea types as a proxy for potential decomposition rates, across five tundra vegetation types. Direct effects of warming were assessed by comparing mass loss within and outside warming manipulations. Indirect effects of warming, such as those caused by warming-induced changes in plant community composition, were assessed through the relationship between mass loss of tea and local biotic and abiotic conditions. We found positive effects of warming on decomposition, although the responses varied between vegetation and tea types. Interestingly, we found support for the indirect influence of long-term warming on decomposition through warming-induced changes in the composition of plant communities. Our findings demonstrate the complexity in decomposition responses to warming across different vegetation types and highlight the importance of long-term legacies of warming in decomposition responses across the Arctic.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3