A 6 year longitudinal study of post-fire woody carbon dynamics in California’s forests

Author:

Eskelson Bianca N.I.1,Monleon Vicente J.2,Fried Jeremy S.3

Affiliation:

1. Department of Forest Resources Management, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.

2. USDA Forest Service, Pacific Northwest Research Station, Corvallis Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.

3. USDA Forest Service, Pacific Northwest Research Station, Portland Forestry Sciences Laboratory, 620 SW Main St., Suite 400, Portland, OR 97205, USA.

Abstract

We examined the dynamics of aboveground forest woody carbon pools — live trees, standing dead trees, and down wood — during the first 6 years following wildfire across a wide range of conditions, which are characteristic of California forest fires. From repeated measurements of the same plots, we estimated change in woody carbon pools as a function of crown fire severity as indicated by a post-fire index, years since fire, pre-fire woody carbon, forest type group (hardwood vs. softwood), elevation, and climate attributes. Our analysis relied on 130 U.S. national forest inventory plots measured before and 1 year after fire, with one additional remeasurement within 6 years after fire. There was no evidence of net change in total wood carbon, defined for this study as the wood in standing trees larger than 12.7 cm diameter at breast height and down wood larger than 7.6 cm in diameter, over the post-fire period in any of the three severity classes. Stands that burned at low severity exhibited considerable shifts from live to standing dead and down wood pools. In stands that burned at moderate severity, live wood decreased significantly whereas no net change was detected in standing dead or down wood. High severity fire burning resulted in movement from standing dead to down wood pools. Our results suggest that the carbon trajectories for stand-replacing fires may not be appropriate for the majority of California’s forest area that burned at low to moderate severities.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3