Radiative forcing of forest biomass production and use under different thinning regimes and initial age structures of a Norway spruce forest landscape

Author:

Baul Tarit Kumar12,Alam Ashraful1,Strandman Harri1,Seppälä Jyri3,Peltola Heli1,Kilpeläinen Antti13

Affiliation:

1. School of Forest Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.

2. Institute of Forestry and Environmental Sciences, University of Chittagong, Chittagong 4331, Bangladesh.

3. Finnish Environment Institute (SYKE), P.O. Box 140, FI-00251 Helsinki, Finland.

Abstract

We studied how different thinning regimes and initial age structures of a Norway spruce (Picea abies (L.) Karst.) forest landscape affect the radiative forcing of forest biomass production and use. We considered the effects of forest carbon sequestration, substitution of materials and fossil fuels with forest biomass, and timber use efficiency. The initial age structures of our hypothetical forest landscapes in the middle boreal zone in Finland were young, middle-aged, and mature. Forest landscapes were thinned using either the current thinning recommendations (baseline) or maintaining 20% higher or 20% lower stocking over the 80-year study period. We employed forest ecosystem model simulations together with a life cycle assessment tool. The highest carbon sequestration was obtained by maintaining higher stocking in the landscapes. The initially middle-aged and mature age structures resulted in the strongest cooling of the climate in the first three decades of the simulation, but the highest cooling was found in the young age structure. However, radiative forcing was less sensitive to the thinning than to the substitution or timber use efficiency. Our results indicate that modeled climate impacts are affected by both initial age structure and forest management, which should be considered when generalizing the climate change mitigation potential of forests and forestry.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3