An application of Markov models to the dynamics of Minnesota's forests

Author:

Pastor John,Sharp Angela,Wolter Peter

Abstract

Markov models are matrices of transition probabilities between states and are used to project a vector of state distribution forward in time. Traditionally, Markov models of landscapes assume that the transition probabilities are independent of age for all pixels in a given cover type. But harvesting practices vary the probability of harvesting within cover types by stand age, and so the transition probabilities between older age-classes or into other cover types depend not only on the cover type but also on the age-class within a cover type or successional stage. We used satellite imagery and stand inventory data for northern Minnesota to parameterize and set initial conditions for both age-class independent and age-class dependent Markov models. The assumptions of an age-class independent Markov model are not satisfied by current landscape dynamics in northern Minnesota. Making the probability of harvest depend on age within a cover type results in different landscape dynamics than making the harvest independent of age. Decreasing the nominal rotation age and increasing the spread of harvest ages around the nominal rotation age results in greater abundance of land in regeneration stages, even if the amount of land harvested annually is held constant. Forest landscape models should consider age-dependent as well as cover type-dependent transitions.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3