MicroRNA-1298-5p inhibits cell proliferation and the invasiveness of bladder cancer cells via down-regulation of connexin 43

Author:

Li Gang1,Sun Longfeng2,Mu Zhongyi1,Liu Shibo1,Qu Hongchen1,Xie Qingpeng1,Hu Bin1

Affiliation:

1. Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, People’s Republic of China.

2. Department of Geriatric Cardiovascular Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, People’s Republic of China.

Abstract

MicroRNA (miR)-1298 is widely down-regulated in a variety of malignant tumors, which facilitates cell proliferation, invasiveness, and migration. However, the specific biological function of miR-1298 in bladder cancer (BC) is still unknown. Connexin 43 (Cx43) is often up-regulated in tumors. Identifying miRNAs that target Cx43 in the setting of BC will help to develop Cx43-based therapies for BC. In this study, the results demonstrated that the expression levels of miR-1298 and Cx43 were significantly down-regulated and up-regulated, respectively, in BC tissues. Overexpression of miR-1298 inhibited cell proliferation, migration, and invasiveness in two BC cell lines as determined using MTT assays, cell cycle assays, colony formation assays, Transwell assays, gelatin zymography, and Western blot. In addition, we found that miR-1298 decreased Cx43 expression by directly targeting the 3′-UTR. Further, we observed that the promotion of BC cell proliferation, migration, and invasiveness from Cx43 on could be partially attenuated by overexpressing miR-1298. Moreover, the protein expression of p-ERK was ameliorated after transfection with overexpressed-miR-1298. Knockdown of Cx43 reversed the promotion of cell migration and invasiveness due to decreased expression of miR-1298. All of the data from our study indicate that miR-1298 could be a diagnostic marker of BC and a potential therapeutic agent via inhibiting Cx43.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3