SR protein kinases: the splice of life

Author:

Stojdl David F,Bell John C

Abstract

The eukaryotic genome codes for most of its proteins though discontinuous coding sequences called exons, which are separated by noncoding sequences known as introns. Following transcription of a gene, these exons must be spliced precisely, removing the intervening introns, to form meaningful mature messenger RNAs (mRNA) that are transported to the cytoplasm and translated by the ribosomal machinery. To add yet another level of complexity, a process known as alternative splicing exists, whereby a single pre-mRNA can give rise to two or more mature mRNAs depending on the combination of exons spliced together. Alternative splicing of pre-mRNAs is emerging as an important mechanism for gene regulation in many organisms. The classic example of splicing as a regulator of genetic information during a developmental process is sex determination in Drosophila. The now well-characterized cascade of sex-specific alternative splicing events demonstrates nicely how the control of splice site selection during pre-mRNA processing can have a profound effect on the development of an organism. The factors involved in pre-mRNA splicing and alternative splice site selection have been the subject of active study in recent years. Emerging from these studies is a picture of regulation based on protein-protein, protein-RNA, and RNA-RNA interactions. How the interaction of the various splicing constituents is controlled, however, is still poorly understood. One of the mechanisms of regulation that has received attention recently is that of posttranslational phosphorylation. In the following article, we cite the evidence for a role of phosphorylation in constitutive and alternative splicing and discuss some of the recent information on the biochemistry and biology of the enzymes involved.Key words: phosphorylation, splicing, spliceosome, Clk kinases, SR proteins.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3