Aromaticity in pericondensed cyclopenta-fused polycyclic aromatic hydrocarbons determined by density functional theory nucleus-independent chemical shifts and the Y-rule — Implications in oil asphaltene stability

Author:

Ruiz-Morales Yosadara1

Affiliation:

1. Programa de Ingeniería Molecular, Instituto Mexicano del Petróleo, Eje Lázaro Cárdenas Norte 152, México D.F. 07730, México. (e-mail: )

Abstract

The characterization of the stability of the fused aromatic region (FAR) in oil asphaltenes in terms of kinetic and thermodynamic stability is primary. Such an understanding is important if we are to get the optimal use from the heavy fraction of any crude oil. The FAR region is composed of pericondensed cyclopenta-fused polycyclic aromatic hydrocarbon compounds (CPPAHs) with N, S, and O heteroatoms. The Clar model, which states that the most important representation of a PAH is one having the maximum number of disjoint π-sextets, depicted by inscribed circles, and a minimum number of fixed double bonds, captures the essence of the kinetic and thermodynamic stability arguments. This model is readily employed for complex aromatics of the sort to be considered for asphaltenes. In the present research we prove that the aromaticity of CPPAHs can be assessed by using the qualitative easy-to-apply Y-rule. In the literature, it is proven that the Y-rule is applicable to elucidate the aromaticity of benzenoid PAHs and it has been validated for pericondensed benzenoid PAHs but not for pericondensed CPPAHs. Here, we verify that it is applicable for CPPAHs. The applicability of the Y-rule has been theoretically proven by comparing the π-electronic distribution obtained with it with the one obtained from nucleus-independent chemical shift (NICS) calculations at the density functional theory (DFT) level. The importance of doing this is that due to the polydispersity in the composition of the oil asphaltenes, and to understand their aromatic core structure, it is necessary to be able to asses the aromaticity of many cyclopenta-fused PAHs (possibly more than 500), of different sizes (up to 15 rings between hexagons and pentagons), and different spatial rearrangements in a quick but realistic and effective way. To try to do this with NICS will be very time consuming and computationally expensive, especially in the case of big systems.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3