Analysis of sound radiation from the coupling effect of vibrating noise and moving-vehicle noise on bridges

Author:

Lee Yong-Seon,Kim Sang-Hyo,Jang Won-Suk

Abstract

An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a three-dimensional (3-D) frame element model, is analyzed with a 3-axle (8 degrees of freedom (DOF)) truck model and a 5-axle (13 DOF) tractor-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid–structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff–Helmholtz integral. Among the diverse parameters affecting the dynamic response of a bridge, vehicle velocity, vehicle weight, and spatial distribution of the road surface roughness are found to be the main factors that increase the level of vibration noise. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise between the road and tire. The results show that the low-frequency noise produced by the vibrating bridge members amplifies the high-frequency vehicle noise by 4–7 dB. In addition, the amplification rate of noise increases with traveling speed and vehicle weight. Key words: acoustic pressure on surface, sound radiation, noise level, Kirchhoff–Helmholtz integrals, dynamic response, vehicle noise model, sound pressure level.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reconstruction of low-frequency bridge noise using an inverse modal acoustic transfer vector method;Journal of Low Frequency Noise, Vibration and Active Control;2018-12-10

2. Low-frequency noise radiation from traffic-induced vibration of steel double-box girder bridge;Journal of Vibration and Control;2011-08-03

3. Noise Evaluation for Pavement Maintenance in Metropolitan Highway Bridges;Journal of Performance of Constructed Facilities;2009-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3