Author:
Roeckel-Drevet P,Tourvieille J,Gulya T J,Charmet G,Nicolas P,Labrouhe D Tourvieille de
Abstract
Downy mildew of sunflower (Helianthus annuus L.), caused by the pathogen Plasmopara halstedii, is a potentially devastating disease. Seventy-seven isolates of P. halstedii collected in twelve countries from four continents were investigated for RAPD polymorphism with 21 primers. The study led to a binary matrix, which was subjected to various complementary analyses. This is the first report on the international genetic diversity of the pathogen. Similarity indices ranged from 89% to 100%. Neither a consensus unweighted pair group method with arithmetic means (UPGMA) tree constructed after bootstrap resampling of markers nor a principal component analysis based on distance matrix revealed very consistent clusterings of the isolates, and groups did not fit race or geographical origins. Phylogenies were probably obscured by limited diversity. Analysis of molecular variance (AMOVA) and Nei's genetic diversity statistics gave similar conclusions. Most of the genetic diversity was attributable to individual differences. The most differentiated races also had the lowest within-diversity indices, which suggest that they appeared recently with strong bottleneck effects. Our analyses suggest that this pathogen is probably homothallic or has an asexual mode of reproduction and that gene flow among countries can occur through commercial exchanges. Knowledge of the downy mildew populations' structure at the international level will help to devise strategies for controlling this potentially devastating disease.Key words: RAPD, Helianthus annuus, genetic diversity, plant pathogen.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献