Enzymatic processes for biodegradation of poly(hydroxyalkanoate)s crystals

Author:

Numata Keiji,Abe Hideki,Doi Yoshiharu

Abstract

Poly(hydroxyalkanoate)s (PHAs) have attracted much attention as environmentally compatible polymeric materials that can be produced from renewable carbon resources. Biodegradation of PHA materials occurs by the function of extracellular PHA depolymerase secreted from microorganisms. Thus, elucidation of the enzymatic degradation mechanism for PHA materials is important to design PHA materials with desirable properties and controlled biodegradability. The solid PHA polymer is a water-insoluble substrate but PHA depolymerases are soluble in water. Therefore, the enzymatic degradation of PHA materials is a heterogeneous reaction on the material’s surface. Two distinct processes are involved during the degradation, namely, adsorption of the enzyme on the surface of PHA material and the subsequent hydrolysis of polymer chains. Atomic force microscopy (AFM) is a powerful tool that has been used for the quantitative analysis of PHA crystal degradation. AFM enables the characterization of the crystal surface nanostructure in a buffer solution. By using in-situ (real-time) AFM observations, we recently succeeded in observing the degradation processes of PHA crystals. Subsequently, we were also able to investigate the degradation rates of PHA crystals using the same technique. In this review, we have attempted to give an overview concerning the direct visualization of the adsorption, as well as the hydrolysis reactions of PHA depolymerases at the nanometer scale. In addition, we present other analytical techniques besides AFM as a complimentary approach to analyze the effect of enzyme adsorption on PHA crystals.Key words: poly(hydroxyalkanoate) (PHA), enzymatic degradation, lamellar crystal, PHA depolymerase.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3