Distinguishing eastern North American forest moth pests by wing-scale ultrastructure: potential applications in paleoecology

Author:

Milbury Kristen J.1,Cwynar Les C.1,Edwards Sara23

Affiliation:

1. Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB E3B 5A3, Canada

2. Population Ecology Group, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB E3B 6C2, Canada

3. Forest Protection Limited, Fredericton International Airport, 2502 Route 102 Highway, Lincoln, NB E3B 7E6, Canada

Abstract

The use of fossil moth wing scales has recently been introduced as a new method to reconstruct population histories of lepidopterans and provide a proxy for insect disturbance. We investigated the potential for using wing-scale ultrastructure to distinguish between the five most common outbreak species of moth pests in eastern North America: spruce budworm ( Choristoneura fumiferana Clemens), hemlock looper ( Lambdina fiscellaria Guenée), forest tent caterpillar ( Malacosoma disstria Hübner), blackheaded budworm ( Acleris variana Fernie), and jack pine budworm ( Choristoneura pinus Freeman). Using scanning electron images of scales, we made qualitative and quantitative comparisons of morphological traits at the ultrastructural level. We found that hemlock looper and eastern blackheaded budworm scales could be categorically separated from each other and from the three other species. We developed a quadratic discriminant function using measurements of ultrastructure traits that distinguishes scales of the three remaining species with an overall accuracy of 66%. We found that forest tent caterpillar could be well separated based on these traits, but we were less confident in distinguishing the closely related jack pine and spruce budworm. Our method offers potential advantages in scale identification for future studies in paleoecology, while providing the additional advantage of not requiring intact, unfolded, and undamaged scales.

Publisher

Canadian Science Publishing

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3