Numerical simulation of debris flows

Author:

Chen H,Lee C F

Abstract

A key requirement in the assessment of landslide risk in such densely populated urban areas as Hong Kong consists of the prediction of potential runout distance or the extent of the subsequent debris flow. This paper presents a three-dimensional dynamic model of unsteady gravity-driven debris flow. The Lagrangian Galerkin finite element method is used to determine the nodal velocity and depth of soil column elements within the sliding mass, with the momentum and mass conservation mathematically closed within the soil column elements. The numerical solution also features a lumped mass matrix and a volume-weighted procedure. The method of least squares approximation plays a smoothing role which enhances stability and efficiency of the numerical solution scheme. The nodal elevation during sliding is obtained via a dynamic bilinear interpolation of the elevation function for the base of the sliding mass. Furthermore, the accuracy, robustness, and generality of this method are validated by experimental results. Its application to the Shum Wan Road landslide and the Fei Tsui Road landslide, both of which occurred during a heavy rainstorm in Hong Kong on 13 August 1995 and involved fatalities, gives reasonable results in comparison to the field observations. A variety of rheological constitutive relationships have already been coded in the present program to provide flexibility and adaptability in practical applications.Key words: debris flows, three-dimensional dynamic model, runout distance.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3