Author:
Hong Won-Kee,Kim Hee-Cheul,Yoon Suk-Han
Abstract
Full scale concrete-filled carbon composite columns without longitudinal and transverse reinforcing steels are tested to investigate the lateral behavior of columns confined with carbon composite tubes. In the present study, the full-scale circular and square concrete-filled carbon composite tubes (CFCTs) with various winding angles with respect to longitudinal axes of the tubes are subjected to lateral loads under a constant axial load. The influence of thickness and winding angle of carbon tubes on the lateral behavior of concrete columns is studied both experimentally and analytically, demonstrating that the calculated ultimate moment capacity of confined columns compares well with test data. For this analytical process, stress–strain relationships of confined concrete columns uncovered by the authors are used to identify the distribution of confined compressive concrete strength at failure. This stress–strain model considers the influence of winding orientation of carbon fibers on the confining capability of the concrete core.Key words: carbon composite, lateral capacity of confined column, strength, filament winding.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献