Effects of wildland fire smoke on a tree-roosting bat: integrating a plume model, field measurements, and mammalian dose–response relationships

Author:

Dickinson M. B.12345,Norris J. C.12345,Bova A. S.12345,Kremens R. L.12345,Young V.12345,Lacki M. J.12345

Affiliation:

1. US Forest Service, Northern Research Station, Forestry Sciences Laboratory, 359 Main Road, Delaware, OH 43015-8640, USA.

2. Norris Consulting Services, 6106 Worth Avenue, Benton, AR 72015, USA.

3. Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA.

4. Department of Chemical and Biomolecular Engineering, Ohio University, 172 Stocker Center, Athens, OH 45701-2979, USA.

5. Department of Forestry, University of Kentucky, Lexington, KY 40546, USA.

Abstract

Faunal injury and mortality in wildland fires is a concern for wildlife and fire management although little work has been done on the mechanisms by which exposures cause their effects. In this paper, we use an integral plume model, field measurements, and models of carbon monoxide and heat effects to explore risk to tree-roosting bats during prescribed fires in mixed-oak forests of southeastern Ohio and eastern Kentucky. Tree-roosting bats are of interest primarily because of the need to mitigate risks for the endangered Indiana bat ( Myotis sodalis ), our focal species. Blood carboxyhemoglobin concentrations predicted from carbon monoxide data supplemented by model output only approached critical levels just above flames in the most intense fires. By contrast, an ear-heating model driven by plume model output suggested that injury to the bat’s thermally thin ears would occur up to heights similar to those of foliage necrosis, an effect for which predictive relationships exist. Risks of heat injury increase with fireline intensity and decrease with both roost height and ambient wind. Although more information is needed on bat arousal from torpor and behavior during fires, strategies for reducing the risk of heat injury emerge from consideration of the underlying causal processes.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3