Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry

Author:

Ali Shahin S.12,Asman Asman3,Shao Jonathan4,Balidion Johnny F.5,Strem Mary D.1,Puig Alina S.6,Meinhardt Lyndel W.1,Bailey Bryan A.1

Affiliation:

1. Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA.

2. Department of Viticulture & Enology, University of California, Davis, CA 95616, USA.

3. Department of Plant Pests and Diseases, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia; Cocoa Research Group, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia.

4. USDA/ARS, Northeast Area, Beltsville, MD 20705, USA.

5. Institute of Weed Science, Entomology and Plant Pathology, University of the Philippines, Los Banos, Laguna 4031, Philippines.

6. Subtropical Horticultural Research Station, USDA/ARS, Miami, FL 33158, USA.

Abstract

Lasiodiplodia theobromae (Pat.) Griffon & Maubl., a member of the family Botryosphaeriaceae, is becoming a significant threat to crops and woody plants in many parts of the world, including the major cacao growing areas. While attempting to isolate Ceratobasidium theobromae, a causal agent of vascular streak dieback (VSD), from symptomatic cacao stems, 74% of isolated fungi were Lasiodiplodia spp. Sequence-based identification of 52 putative isolates of L. theobromae indicated that diverse species of Lasiodiplodia were associated with cacao in the studied areas, and the isolates showed variation in aggressiveness when assayed using cacao leaf discs. The present study reports a 43.75 Mb de novo assembled genome of an isolate of L. theobromae from cacao. Ab initio gene prediction generated 13 061 protein-coding genes, of which 2862 are unique to L. theobromae, when compared with other closely related Botryosphaeriaceae. Transcriptome analysis revealed that 11 860 predicted genes were transcriptionally active and 1255 were more highly expressed in planta compared with cultured mycelia. The predicted genes differentially expressed during infection were mainly those involved in carbohydrate, pectin, and lignin catabolism, cytochrome P450, necrosis-inducing proteins, and putative effectors. These findings significantly expand our knowledge of the genome of L. theobromae and the genes involved in virulence and pathogenicity.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3