Author:
Liu Xiaosong,Zheng Fan,Jürgensen A,Perez-Dieste V,Petrovykh D Y,Abbott N L,Himpsel F J
Abstract
Surface science has made great strides towards tailoring surface properties via self-assembly of nanoscale molecular adsorbates. It is now possible to functionalize surfaces with complex biomolecules such as DNA and proteins. This brief overview shows how NEXAFS (near edge X-ray absorption fine structure spectroscopy) can be used to characterize the assembly of biological molecules at surfaces in atom- and orbital-specific fashion. To illustrate the range of applications, we begin with simple self-assembled monolayers (SAMs), proceed to SAMs with customized terminal groups, and finish with DNA oligonucleotides and Ribonuclease A, a small protein containing 124 amino acids. The N 1s absorption edge is particularly useful for characterizing DNA and proteins because it selectively interrogates the π* orbitals in nucleobases and the peptide bonds in proteins. Information about the orientation of molecular orbitals is obtained from the polarization dependence. Quantitative NEXAFS models explain the polarization dependence in terms of molecular orientation and structure.Key words: NEXAFS, bio-interfaces, ribonuclease A, immobilization, orientation.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献