Inverse analysis for the determination of heat transfer coefficient

Author:

Fguiri Ali1,Daouas Naouel2,Radhouani M-Sassi2,Aissia Habib Ben2

Affiliation:

1. Institut Supérieur des Sciences Appliquées et de Technologie de Gabès Rue Amor Ben El Khatab 6029 Gabès Tunisia.

2. Département d’Energétique Ecole Nationale d’Ingénieurs de Monastir, Rue Ibn El Jazzar, Monastir, 5019, Tunisia.

Abstract

The parallel hot wire technique is considered an effective and accurate means of experimental measurement of thermal conductivity. However, the assumptions of infinite medium and ideal infinitely thin and long heat source lead to some restrictions in the applicability of this technique. To make an effective experiment design, a numerical analysis should be carried out a priori, which requires a precise specification of the heating source strength and the heat transfer coefficient on the external surface. In this work, a more accurate physical and mathematical modeling of an experimental setup based on the parallel hot wire method is considered to estimate the two above-mentioned parameters from noisy temperature histories measured inside the material. Based on a sensitivity analysis, the heating source strength is estimated first using early time measurements. With such estimated value, determination of the heat transfer coefficient using temperatures measured at later times is then considered. The Levenberg–Marquardt (LM) method is successfully applied using a single experiment for the inverse solution of the two present parameter estimation problems. Estimates of this gradient-based deterministic method are validated with a stochastic method (Kalman filter). The effects of the measurement location, the heating duration, the measurement time step, and the LM parameter on the estimates and their associated confidence bounds are investigated. Used in the traditional fitting procedure of the parallel hot wire technique, the estimated heating source power provides a reasonable agreement between fitted and exact values of the thermal conductivity and the thermal diffusivity.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3