Effect of cAMP-dependent protein kinase A (PKA) on HCV nucleocapsid assembly and degradation

Author:

Majeau Nathalie1,Bolduc Marilène1,Duvignaud Jean-Baptiste1,Fromentin Rémi1,Leclerc Denis1

Affiliation:

1. Centre de Recherche en Infectiologie, Pav. CHUL, Université Laval, 2705 boul. Laurier, QC G1V 4G2, Canada.

Abstract

The primary function of the hepatitis C virus (HCV) core protein is genome encapsidation. Core protein is also subject to post-translational modifications that can impact on the assembly process. In this report, we have studied the effect of cAMP-dependent protein kinase A (PKA) phosphorylation on its assembly and stability in a yeast Pichia pastoris expression system. We have recently shown that co-expression of the human signal peptide peptidase and core protein (amino acids 1–191) in yeast leads to the formation of nucleocapsid-like particles (NLPs) that are morphologically similar to the wild-type HCV capsid. In this system, we expressed mutants S53A and S116A and mutants S53D and S116D to abolish or mimic PKA phosphorylation, respectively. None of these mutations affected HCV assembly, but S116D led to the degradation of core protein. We also showed that nonenveloped NLPs were labelled in vitro by PKA, suggesting that the phosphorylation sites are available at the surface of the NLPs. The co-expression of human PKA with core and human signal peptide peptidase in yeast did not produce phosphorylated NLPs and led to a decreased accumulation of nonenveloped particles. Mutation S116A restored the core protein content. These results suggest that PKA phosphorylation can modulate HCV core levels in infected cells.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3