Sleep deprivation disturbs uterine contractility and structure in pregnant rats: role of matrix metalloproteinase 9 and transforming growth factor-β

Author:

El-Malkey Nanees F.1ORCID,Aref Mohammed2,Goda Nehal I. A.3,Hussien Marwa H.4,Samy Walaa4,Hadhod Shimaa1

Affiliation:

1. Physiology department, faculty of medicine, Zagazig University, Al-Sharquia, Egypt

2. Anatomy department, faculty of Veterinary medicine, Zagazig University, Al-Sharquia, Egypt

3. Department of Histology and Cytology, faculty of Veterinary medicine, Zagazig University, Al-Sharquia, Egypt

4. Biochemistry department, faculty of medicine, Zagazig University, Al-Sharquia, Egypt

Abstract

Sleep deprivation (SD) during pregnancy can impact the delivery procedure, with prolongation of the labor duration. Matrix metalloproteinase-9 (MMP9) and transforming growth factor-β (TGF-β) are regulators of uterine remodeling. Their dysregulation is vital for abnormal placentation and uterine enlargement in complicated pregnancies. Therefore, this study aims to explore the outcome of SD throughout pregnancy on ex vivo uterine contractility, MMP9 and TGF-β, and uterine microscopic structure. A total of 24 pregnant rats were divided into two groups. From the first day of pregnancy, animals were exposed to partial SD/6 h/day. Uterine in vitro contractile responses to oxytocin, acetylcholine, and nifedipine were assessed. Additionally, uterine levels of superoxide dismutase and malondialdehyde and uterine mRNA expression of MMP9, TGF-β, and apoptotic biomarkers were analyzed. The results showed that SD significantly reduced uterine contractile responses to oxytocin and acetylcholine, while it augmented the relaxing effect of nifedipine. In addition, it significantly increased oxidative stress status, MMP9, TGF-β, and apoptotic biomarkers' mRNA expression. All were accompanied by degeneration of endometrial glands, vacuolization with apoptotic nuclei, and increased area% of collagen fibers. Finally, increased uterine MMP9 and TGF-β mRNA expression during SD clarified their potential role in modulating uterine contractility and structure.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3