High salt-induced morphological and glycocalyx remodeling of human vascular smooth muscle cells is reversible but induces a high sodium salt-like sensitive memory

Author:

Simon Yanick1,Jacques Danielle1,Bkaily Ghassan1ORCID

Affiliation:

1. Department of immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada

Abstract

Our recent work showed that short-term treatment (1–2 days) with high sodium salt had no effect on the morphology of human vascular smooth muscle cells (hVSMCs). However, chronic (long-term treatment, 6–16 days) high sodium salt (CHSS) induced hypertrophy and decreased the relative density of the glycocalyx in hVSMCs. Whether this CHSS effect is reversible at both the morphological and the intracellular calcium and sodium levels is unknown. In the present study, we tested the hypothesis that the effect of CHSS on the morphological and functional levels of hVSMCs is reversible. However, it induced an irreversible increase in the sensitivity of the cells following short-term treatment with high extracellular Na+. We tested the effects of the removal of CHSS treatment on the morphology and intracellular sodium and calcium of hVSMCs. Our results showed that restoring average sodium concentration (145 mM) modeled back the relative density of the glycocalyx, the intracellular resting calcium and sodium levels, and the whole cell and nuclear volumes of hVSMCs. In addition, it induced a permanent remodeling of hVSMCs’ response to a short-term increase in the extracellular level of sodium salt by developing spontaneous cytosolic and nuclear calcium waves. Our results showed that CHSS is reversible at both the morphological and basal intracellular ionic levels. However, it maintained a high sensitivity to short-term elevation of extracellular sodium. These results suggest that even if chronic high salt is corrected, it induces a high sodium salt-like sensitive memory.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3