The effect of dapagliflozin on myocardial ischemia–reperfusion injury in diabetic rats

Author:

Xiong Shilong1,Mo Donghua1,Wu Yingjun1,Wu Peng1,Hu YuanMing1,Gong Fang2

Affiliation:

1. Department of Laboratory Diagnostics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, People's Republic of China

2. ECG Lab, The Second Affiliated Hospital of Guangzhou Medical University, Panyu, Guangzhou, Guangdong 511447, People's Republic of China

Abstract

The incidence of ischemic heart disease is 2–3 times higher in diabetic patients. However, the effect of dapagliflozin on ischemia–reperfusion myocardial injury in diabetic rats has not been studied. We examined the effects of dapagliflozin on myocardial IR injury in streptozotocin–nicotinamide-induced diabetic rats. Rats were divided into four groups ( n = 7 in each group): control, control-dapagliflozin, diabetes, and diabetes-dapagliflozin. Dapagliflozin (1.5 mg/kg/day) was administered concomitantly in drinking water for 2 months. The hearts were perfused in a Langendorff's apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±d P/d t), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expressions, creatine kinase MB (CK-MB) and troponin imyocardial enzyme extravasation, and lactate dehydrogenase. The recovery of LVDP and ±d P/d t in diabetic rats was lower than that in controls but near normal after dapagliflozin treatment. Diabetic rats had decreased eNOS expression and increased iNOS expression at baseline and after IR, whereas dapagliflozin normalized these parameters after IR. Compared with controls, cardiac NOx levels were initially lower in diabetic patients but higher after IR. Baseline MDA levels were higher in diabetic rats after IR, whereas cardiac NOx levels decreased after treatment with dapagliflozin. Dapagliflozin protects the diabetic rat heart from ischemia–reperfusion myocardial injury by regulating the expression of eNOS and iNOS and inhibiting cardiac lipid peroxidation.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3