Microbial community structure and diversity within hypersaline Keke Salt Lake environments

Author:

Han Rui12,Zhang Xin3,Liu Jing3,Long Qifu3,Chen Laisheng2,Liu Deli1,Zhu Derui3

Affiliation:

1. Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China.

2. Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, Qinghai 810016, People’s Republic of China.

3. Research Center of Basic Medical Sciences, Qinghai University Medical College, Xining, Qinghai 810016, People’s Republic of China.

Abstract

Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3–V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%–58.35% relative abundance), Lactococcus (9.52%–10.51%), and Oceanobacillus (8.82%–9.88%) within the Firmicutes phylum (74.81%–80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai–Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg2+, Cl, Na+, and K+) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3