Mechanistic effect of human umbilical cord blood derived mesenchymal stem cells on the submandibular salivary gland in ovariectomized rats

Author:

Gouda Zienab A.1,Khalifa Mohamed E. Ali1,Shalaby Sally M.2,Hussein Samia2

Affiliation:

1. Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt.

2. Medical Biochemistry and Molecular Biology Departments, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt.

Abstract

We performed this study to understand the effect of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) on the submandibular gland after bilateral ovariectomy. For this, 21 adult female rats were distributed equally among 3 groups: the sham-operated group (SHAM); the ovariectomized group (OVX); and the OVX group that received repeated intravenous injections of the hUCB-MSCs (OVX + hUCB-MSCs). We used reverse transcription – PCR to analyze for the gene expression of AQPs 3, 4, 5, and BMP-6. The cellular localization and expression of human CD105, human CD34, proliferating nuclear antigen (PCNA), single-stranded DNA (ss-DNA), caspase 3, AQP1, and α smooth muscle actin (α-SMA) were determined immunohistochemically. In the OVX group, a significant decrease in the gene expression of AQP3, AQP4, and BMP6, as well as the acinar area % was detected, while area % of granular convoluted tubules (GCTs) showed a significant increase. A significant decrease in area % staining positively for AQP1 and α-SMA was noted. An obvious improvement in the structure of the submandibular gland was demonstrated in the group injected with hUCB-MSCs, as well as a significant increase in the gene expression of AQP3, AQP4, and BMP6. The acinar and GCT area %, as well as the different measured markers, were relatively normal. This demonstrates that E2-deficiency induces structural changes to the submandibular gland. Moreover, a definite amelioration of the structure and function of the submandibular gland was detected after the administration of hUCB-MSCs.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3