Triacylglycerol turnover in isolated working hearts of acutely diabetic rats

Author:

Saddik Maruf,Lopaschuk Gary D.

Abstract

Although myocardial triacylglycerol may be a potentially important source of fatty acids for β-oxidation in diabetes, few studies have measured triacylglycerol turnover directly in hearts from diabetic animals. In this study, myocardial triacylglycerol turnover was directly measured in isolated working hearts from streptozotocin-induced acutely diabetic rats. Hearts were initially perfused in the presence of 1.2 mM [14C]palmitate and 11 mM glucose for 1 h (pulse) to label the endogenous lipid pools, followed by a 10-min washout perfusion. Hearts were then perfused for another hour (chase) with buffer containing 11 mM glucose ± 1.2 mM [3H]palmitate. During the chase, both 14CO2 and 3H2O production (measures of endogenous and exogenous fatty acid oxidation, respectively) were determined. A second series of hearts were perfused using the same protocol, except that unlabeled palmitate was used during the pulse and 11 mM [14C(U),5-3H]glucose ± unlabeled palmitate was present during the chase. Both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured in this series. Myocardial triacylglycerol levels were significantly higher in the diabetic rat hearts (77.5 ± 4.6 vs. 33.7 ± 4.1 μmol fatty acid/g dry mass in control hearts). In diabetic rat hearts chased with 1.2 mM palmitate, triacylglycerol lipolysis was increased, although endogenous [14C]palmitate oxidation rates were similar to control hearts and contributed 10.1% of overall ATP production. The majority of fatty acids derived from triacylglycerol lipolysis were released into the perfusate. In the absence of palmitate, both triacylglycerol lipolysis and endogenous [14C]palmitate oxidation rates were significantly increased in diabetic rat hearts, compared with control. Under these conditions, triacylglycerol fatty acid oxidation contributed 70% of steady-state ATP production in diabetic rat hearts, compared with 34% in control hearts. These results demonstrate that in diabetic rat hearts myocardial triacylglycerol lipolysis is significantly increased and can readily be used as a source of fatty acids for mitochondrial β-oxidation.Key words: heart, triacylglycerols, fatty acid oxidation, glucose oxidation, glycolysis.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3