Survey on nitrogenase evolution by considering the importance of nitrogenase, its structure, and mechanism of nitrogenase

Author:

SUN Wenli,SHAHRAJABIAN Mohamad Hesam

Abstract

Nitrogenase is a complicated enzyme that actives the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3). The aim of this manuscript is to review the nitrogenase evolution with considering nitrogenase, structure of nitrogenase, action mechanism of nitrogenase and oxygen sensitive mechanism of nitrogenase. The searches focused on publications from 1980 to February 2023, using PubMed, Google Scholar, Science Direct, and Scopus databases. In the term of evolution, the nitrogen cycle has experienced highly changes; at the beginning of life and suggested the exact anoxic scenario, the comparatively sufficient ammonium was possibly used in an assimilation/mineralization cycle by protocellular organisms. The main nif gene products which are active in nitrogen fixation are nifH, nifD, nifK, nifT, nifY/nafY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, nifF, nifL, nifA, nifB, fdxN, nifQ, and nifJ. The main vnf gene products which are active in nitrogen fixation are vnfA, vnfE, vnfN, vnfX, vnfH, vnfFd, vnfD, vnfG, vnfK, and vnfY. Oxygen can be either detrimental or beneficial for diazotrophs in organisms suitable for an aerobic catabolism, and it supports the production of a substrate for nitrogenase (ATP), but it can also impede the activity and suppress the synthesis of this enzyme. 

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3