Influence of Radiative Components and Meteorological Conditions on Simulation of Slope-Specific Heat Balance

Author:

Nishioka Mito1,Yamashita Megumi1,Saito Hirotaka1

Affiliation:

1. Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract

Fields have uneven surfaces, such as ridges, and the shortwave radiation of fields differs depending on the orientation of the slope of the unevenness, resulting in variations in the distribution of moisture on the ground surface. Therefore, it is necessary to estimate the heat and water balances spatially, taking into account the variation of the moisture distribution on the ground surface. Previously, one-dimensional simulations have been used to estimate the heat and water balance of non-sloping surfaces. To estimate the heat and water balance spatially while taking into account ground surface roughness, it is necessary to first estimate the heat and water balance of the ground surface on the basis of slope orientation. The purpose of this study was to clarify those factors, in addition to shortwave radiation, that affect the heat balance of a bare sloping surface at different orientations. To achieve this, the heat balance calculated using observational data of bare ground, including unevenness, was compared with the heat balance estimated by HYDRUS-1D simulation for each slope orientation. Additionally, the brightness index of RGB images was calculated and compared with the relative ground surface brightness and the estimated heat balance for each slope orientation. The estimated results at night and at sunrise/sunset were extremely small in comparison with the calculated results, and the heat balance simulation in the absence of shortwave radiation remained an issue. The relationship between ground surface brightness and ground conduction heat was completely different depending on slope direction, suggesting that ground surface heat transfer is affected substantially by factors other than shortwave radiation related to slope orientation. The findings indicate that it is necessary to examine the effects of heat transfer in detail to estimate the heat balance related to slope orientation.

Publisher

Environmental and Engineering Geophysical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editors’ Foreword;Journal of Environmental and Engineering Geophysics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3