Characterization of High-Temperature Tensile Properties and Thermal Stability in Gas Tungsten Arc Welds of Ti-added Reduced Activation Ferritic/Martensitic Steel

Author:

Jo Yoon-HwanORCID,Kim Tae-Hun,Kim Chiwon,Moon Joonoh,Lee Chang-Hoon,Jung Seung-Jin,Hong Hyun-UkORCID

Abstract

In this study, the effects of Ti addition on the microstructure, the tensile properties at 550 ℃, and the thermal stability in gas tungsten arc (GTA) welds of reduced activation ferritic/martensitic (RAFM) steel were studied. Ti was added to promote precipitation of MX in order to enhance high-temperature properties. For reference, Ti-free RAFM (reference RAFM steel with the composition of 9Cr-1W-0.2V-0.1Ta-0.1C) was compared with 0.013 wt% Ti added RAFM steel (Ti-added RAFM). The addition of Ti contributed to the increase in the area fraction of MX precipitates (2.0 → 4.6 %) and a decrease in the average size of M23C6 (149 → 119 nm) in the base metal. After the cross-weld tensile test at 550 ℃, the tensile properties of Ti-added RAFM steel were superior to that of Ti-free RAFM steel. Both steels were fractured at inter-critical heat-affected zone (ICHAZ) showing the lowest hardness due to over-tempering. However, the higher area fraction of MX precipitates in the Ti-added RAFM produced more significant strengthening, compared to the Ti-free RAFM steel. After heat exposure at 550 ℃ for 500 h, Ti-added RAFM steel was highly resistant to degradation; hardness distribution and tensile properties were almost similar before and after thermal exposure. ICHAZ exhibited the substantial retention of fine laths and high density of dislocation with marginal recovery even after thermal exposure. It is conceivable that excellent thermal stability of Ti-added RAFM steel can be attributed to the high fraction of MX particles by suppressing lath boundary migration.

Funder

Changwon National University

Publisher

The Korean Welding and Joining Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3