Mechanical Properties of Fe-TiC Composites for Friction Stir Welding Tool Application by a Spark Plasma Sintering

Author:

Park Bum-SoonORCID,Yang Min-HyeokORCID,Park Hyun-KukORCID

Abstract

TiC, which has high hardness, was added to reinforcing material to improve the mechanical property of Fe. Fe-TiC composites as a function of TiC contents were fabricated by high energy ball milling and spark plasma sintering. The Fe-TiC composites were synthesized with different TiC contents (5, 10, and 20 wt.%) and subsequently consolidated by rapid sintering at 850℃ under 60 MPa. The relative density of Fe-TiC composites is from 99.5% to 94% as the TiC contents increased. Due to the increased in TiC contents, which contributes to the sintering rate with low wettability and low deformation at high temperature, has resulted in a decrease of relative density. The hardness of Fe-TiC was ranged from 128.9±10.4 to 687.2±14.6 kg/mm 2 as the TiC contents increased. Particularly, the highest hardness of TiC weight percent was 20 wt.% TiC which was related with Hall-Patch relationship. Also this enhancement was attributed to the dispersion strengthening effect of the agglomerated powders and solid solution strengthening through high energy ball milling. Microstructure, and phase analysis of Fe-TiC composites were investigated.

Funder

Korea Institute of Industrial Technology

Publisher

The Korean Welding and Joining Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3