Detection of Hot Cracking for 6000 Series Aluminum Alloys using a Multi-Sensor Based Deep Learning Model

Author:

Kim GeonminORCID,Lee JaeheonORCID,Lee Seung HwanORCID

Abstract

This study developed a monitoring technology using a multi-sensor based deep learning model to diagnose hot cracking in aluminum alloy laser welding. Hot cracking that occurs during the laser welding process of aluminum alloys is difficult to diagnose accurately with a single sensor signal, necessitating multi-sensor based process monitoring technology. To monitor these hot cracks, laser-induced plasma, acoustic, and elastic wave signals were simultaneously measured using a spectrometer, non-contact acoustic sensor, and contact acoustic sensor during the overlap laser welding process of 6000 series aluminum alloys. The welded specimens were classified into normal and cracked specimens through bead analysis, and features related to hot cracking were extracted from each sensor signal to utilize the measured multi-sensor signals for monitoring. The extracted features from each signal were used as inputs for a Deep Neural Network (DNN) model capable of learning complex nonlinear relationships, and the hyperparameters of the DNN model were optimized using a genetic algorithm. The DNN model trained with multi-sensor data diagnosed hot cracking with an accuracy of 93.75%.

Funder

Korea Evaluation Institute of Industrial Technology

Ministry of Trade, Industry and Energy

Publisher

The Korean Welding and Joining Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3