Thermal and Frequency Response Analysis on Friction Stir Welding Tool with Different Materials by Using FEA Method

Author:

Pandey RohitORCID,Shukla HimanshuORCID,Bhaskar BalendraORCID,Shrivastava AshishORCID

Abstract

Friction stir welding (FSW) is a solid-state joining technique that joins two facing workpieces without melting the workpiece material. It makes use of a deceased item. The region surrounding the FSW tool softens due to heat produced by friction between the revolving tool and the workpiece material. We are now working on specialised applications (lap and butt welding) while concentrating on test sorts. In addition to being faster than the state of the art, both provide lap welds that are 190% of the plate thickness, improve weld honesty, and lessen upper plate decline. Friction stir welding, or FSW for short, is a popular solid state joining method for soft materials like aluminium alloys. For stronger alloys like steel and titanium alloys, the FSW process's economic sustainability hinges on the creation of long-lasting, moderately cost equipment that reliably yields welds with outstanding structural integrity. The performance of the tool, weld quality, and cost are all impacted by material design and choice. This research reviews and critically examines many key FSW tool components, including process economics, geometry and load bearing capacity, frequency response analysis, tool degradation mechanisms, and tool material selection. The Finite Element Method (FEM) approach is used to characterise the process and provide a more comprehensive knowledge of the thermal effects and thermal inaccuracies on the tool materials.

Publisher

The Korean Welding and Joining Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3