Integrated Approach to Simulation of Near-Wellbore and Wellbore Cleanup

Author:

Theuveny B..1,Mikhailov D..1,Spesivtsev P..1,Starostin A1,Osiptsov A. A.1,Sidorova M..1,Shako V..1

Affiliation:

1. Schlumberger

Abstract

Abstract Cleanup operations are often challenging to predict. The review of the major physical phenomena governing the behavior of a well cleanup sheds light on some important considerations to be taken to design and realize such operations. An optimal cleanup program will depend on the well construction processes, the lithological factors and the interaction between the drilling fluids and the formation, active sequencing of chokes. The coupling of these complex physical operations can be non-intuitive. A modeling approach is proposed and validated through comparison with field data. The design of an optimal cleanup program is hampered coupling of two issues: the existence of formation damage due to the invasion of mud in the near well-bore area and the transient well bore phenomena associated with the replacement of drilling or completion fluid with lighter hydrocarbons. This paper investigates the integration of transient simulation of near wellbore multiphase phenomena with complex wellbore dynamics and provides recommendation on cleanup designs. The success of a wellbore cleanup is gauged in different ways, depending on the lithological, drilling and operational environments. Metrics of performance such as duration of the operation, productivity, recovery of loss fluids are commonly used. We tackle the global issue with a predictive model specifically tailored to cleanup operations in a layered system that considers: An internal mud cake (which is formed by mud solids intrusion into the formation) An external mud cake (formed at the interface well / formation) A mud filtrate invaded zone Potential perforations Dynamics of the multiphase (and multi-component) wellbore flow Flow control devices The paper discusses the laboratory validation of the near well bore model against dynamic core flooding and transient return permeability experiments. Comparisons against field data obtained with high speed multiphase flowmeter or dynamic production profiles further enhance confidence in the simulations. A number of recommendations for cleanup designs are provided considering some of the challenging constraints such as: Operational constraints: limited storage volume, rig time, pressure drawdown limits (collapse), noise, rates Fluids limitations: avoiding drawing pressure below bubble / dew points Geomechanics limitations: max drawdown or avoiding tubing collapse or protecting other completion elements such as screens Lithological challenges: multilayer reservoirs and horizontal wells where it is necessary to clean all layers / drain. Large drilling losses resulting in perforation channels not bypassing totally the mud filtrate invasion zone (and sometimes the internal mud cake area) The analysis of the sensitivity of various model parameters confirms the need for robust cleanup designs that takes into account the actual uncertainties of the well construction process and of the formation heterogeneities and near wellbore characteristics. This study demonstrates that the principal cleanup characteristics are essentially dependent on properties of the drilling and completion fluids. It is possible to give some practical operational recommendations for improved cleanup such as zone selectivity, choke sequencing and pressure controls. The utilization of temperature variations at the on-set of the cleanup also provides important knowledge to the interaction of the drilling fluids and completion fluids with the formation prior to the test. This information can be used to optimize the next well. The monitoring in real-time (or in-time) of the downhole parameters such as pressure, temperature can significantly help to reduce the uncertainty of the cleanup operation and decrease substantially the rig time.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3