A New Approach to the Modeling of Hydraulic-Fracturing Treatments in Naturally Fractured Reservoirs

Author:

Li Sanbai1,Zhang Dongxiao1,Li Xiang1

Affiliation:

1. Peking University

Abstract

Summary A fully coupled thermal/hydromechanical (THM) model for hydraulic-fracturing treatments is developed in this study. In this model, the mixed finite-volume/finite-element method is used to solve the coupled system, in which the multipoint flux approximation L-method is used to calculate interelement fluid and heat flux. The Gu et al. (2011) crossing criterion is extended to a 3D scenario to delineate the crossing behaviors as hydraulic fractures meet inclined natural fractures. Moreover, the modified Barton et al. (1985) model proposed by Asadollahi et al. (2010) is used to estimate the fracture aperture and model the shear-dilation effect. After being (partially) verified by means of comparison with results from the literature, the developed model is used to investigate complex-fracture-network propagation in naturally fractured reservoirs. Numerical experiments show that the key factors controlling the complexity of the induced-fracture networks include stress anisotropy, injection rate, natural-fracture distribution (fracture-dip angle, strike angle, spacing, density, and length), fracture-filling properties (the degree of cementation and permeability), fracture-surface properties (cohesion and friction angle), and tensile strength of intact rock. It is found that the smaller the stress anisotropy and/or the lower the injection rate, the more complex the fracture network; a high rock tensile strength could increase the possibility of the occurrence of shear fractures; and under conditions of large permeability of fracture filling combined with small cohesive strength and friction coefficient, shear slip could become the dominant mechanism for generating complex-fracture networks. The model developed and the results presented can be used to understand the propagation of complex-fracture networks and aid in the design and optimization of hydraulic-fracturing treatments.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3