Pseudokinetic Model for Field-Scale Simulation of In-Situ Combustion

Author:

Mercado Diana1,Trevisan Osvair V.1

Affiliation:

1. State University of Campinas

Abstract

Summary Chemical reactions of the in-situ-combustion (ISC) process take place in a thin zone of less than a meter thick. Numerical simulations at the field scale typically use gridblocks that are at least two orders of magnitude greater than that. Such divergence leads to improper representations of key aspects of the process, such as the temperature distribution and the reaction kinetics. In accordance with that, the reaction occurrence is not controlled by the activation energy in the simulation models. The major shortcoming is on fuel deposition, a key issue in ISC. In the simulator, the cracking reaction may proceed slowly at initial reservoir temperature, generating coke from the beginning of the simulation job. The main focus of the paper is on a new pseudokinetic model to improve the representation of the combustion-zone effects and the fuel consumption in the field-scale ISC simulation. Along with the development of the pseudokinetic model, remedies are proposed for some shortcomings of the current reservoir simulation of ISC. The model allows maintaining the dependence of reaction rate with temperature through the use of appropriate activation-energy values. Furthermore, the model reduces the temperature-distribution effect by controlling the reaction rate on the basis of average-temperature values observed in the field-simulation model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3