Experimental Investigation of Methane Hydrate Formation in the Carboxmethylcellulose (CMC) Aqueous Solution

Author:

Fu Weiqi1,Wang Zhiyuan1,Chen Litao1,Sun Baojiang1

Affiliation:

1. China University of Petroleum (East China)

Abstract

Summary In the development of deepwater crude oil, gas, and gas hydrates, hydrate formation during drilling operations becomes a crucial problem for flow assurance and wellbore pressure management. To study the characteristics of methane hydrate formation in the drilling fluid, the experiments of the methane hydrate formation in water with carboxmethylcellulose (CMC) additive are performed in a horizontal flow loop under flow velocity from 1.32 to 1.60 m/s and CMC concentration from 0.2 to 0.5 wt%. The flow pattern is observed as bubbly flow in experiments. The experiments indicate that the increase of CMC concentration impedes the hydrate formation while the increase of liquid velocity enhances formation rates. In the stirred reactor, the hydrate formation rate generally decreases as the subcooling condition decreases. However, in this work, with the subcooling condition continuously decreasing, hydrate formation rate follows a “U” shaped trend—initially decreasing, then leveling out and finally increasing. It is because the hydrate formation rate in this work is influenced by multiple factors, such as hydrate shell formation, fracturing, sloughing, and bubble breaking up, which has more complicated mass transfer procedure than that in the stirred reactor. A semiempirical model that is based on the mass transfer mechanism is developed for current experimental conditions, and can be used to predict the formation rates of gas hydrates in the non-Newtonian fluid by replacing corresponding correlations. The rheological experiments are performed to obtain the rheological model of the CMC aqueous solution for the proposed model. The overall hydrate formation coefficient in the proposed model is correlated with experimental data. The hydrate formation model is verified and the predicted quantity of gas hydrates has a discrepancy less than 10%.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3