ESP Performance Monitoring and Diagnostics for Production Optimization in Polymer Flooding: A Case Study of Mangala Field

Author:

Agrawal Nitesh1,Chapman Tom1,Baid Rahul1,Singh Ritesh Kumar1,Shrivastava Sahil1,Kushwaha Malay Kumar1,Kolay Jayabrata1,Ghosh Priyam1,Das Joyjit1,Khare Sameer1,Kumar Piyush1,Aggarwal Shubham1

Affiliation:

1. Cairn Oil & Gas, Vedanta Limited

Abstract

Abstract The objective of this paper is to present a suite of diagnostic methods and tools which have been developed to analyse and understand production performance degredation in wells lifted by ESPs in the Mangala field in Rajasthan, India. The Mangala field is one of the world’s largest full field polymer floods, currently injecting some 450kbbl/day of polymerized water, and a significant proportion of production is lifted with ESPs. With polymer breaking through to the producers, productivity and ESP performance in many wells have changed dramatically. We have observed rapidly reducing well productivity indexes (PI), changes to the pumps head/rate curve, increased inlet gas volume fraction (GVF) and reduction in the cooling efficiency of ESP motors from wellbore fluids. The main drivers for the work were to understand whether reduced well rates were a result of reduced PI or a degredation in the ESP pump curve, and whether these are purely down to polymer or combined with other factors, for example reduced reservoir pressure, increasing inlet gas, scale buildup, mechanical wear or pump recirculation. The methodology adopted for diagnosis was broken in 5 parts – 1) Real time ESP parameter alarm system, 2) Time lapse analysis of production tubing pressure drop, 3) Time lapse analysis of pump head de-rating factor, 4) Time lapse analysis of pump and VFD horse power 5) Dead head and multi choke test data. With this workflow we were able to break down our understanding of production loss into its constituent components, namely well productivitiy, pump head/rate loss or additional tubing pressure drop. It was also possible to further make a data driven asseesment as to the most likely mechanisms leading to ESP head loss (and therefore rate loss), to be further broken own into whether this was due to polymer plugging, mechanical wear, gas volume fraction (GVF) de-rating, partial broken shaft/locked diffusers or holes/recirculation. In some cases a specific mechanism was compounded with an associated impact. For example, in ESPs equipped with an inlet screen, heavy polymer deposition over the screen was resulting in large pressure drops across the screen leading to lower head, but this also resulted in higher GVFs into first few stages of the pump, even though the GVF outside the pump were low, leading to further head loss from gas de-rating of the head curve. With knowledge of the magnitude of production losses from each of the underlying mechanisms, targeted remediation could then be planned. The well and pump modelling adopted in the workflow utilise standard industry calculations, but the combination of these into highly integrated visual displays combined with time lapse analysis of operating performance, provide a unique solution not seen in commercial software we have screened. The paper also provides various real field examples of ESP performance deterioration, showing the impact of polymer deposition leading to increased pump hydraulic friction losses, pump mechanical failure and high motor winding temperature. Diagnoses based on the presented workflow have in many cases been verified by inspection reports on failed ESPs. Diagnosis on ESPs that have not failed cannot be definitive, though the results of remediation (eg pump flush) can help to firm up the probable cause.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3