Visualization of Polymer Retention Mechanisms in Porous Media Using Microfluidics

Author:

Sugar Antonia1,Serag Maged F.1,Torrealba Victor A.2,Buttner Ulrich3,Habuchi Satoshi1,Hoteit Hussein1

Affiliation:

1. King Abdullah University of Science & Technology

2. King Abdullah University of Science & Technology, now at Chevron Corp.

3. Nanofabrication Core Lab, King Abdullah University of Science & Technology

Abstract

Abstract Understanding polymer transport through porous media is key to successful field implementations, including well conformance control and EOR processes. Polymer retention is typically assessed indirectly through its effect on pressure drops and effluent concentrations. Microfluidic techniques represent convenient tools to observe and quantify polymer retention in porous media. In this paper, we demonstrate how a soft-lithography microfluidics protocol can be used to gain insights into polymer transport mechanisms through rocks. The design of the microfluidic chips honors typical pore-size distributions of oil-bearing conventional reservoir rocks, with pore-throats ranging from 2 to 10 μm. The fabrication technology enables the design transfer on a silicon wafer substrate using photolithography. The etched wafer holding the negative pattern of the pore-network served as a mold for building the microfluidics chip body out of polydimethylsiloxane (PDMS). The oxygen plasma bonding of the PDMS to a thin glass slide resulted in a sealed microfluidic chip, conceptually referred to as "Reservoir-on-a-Chip". We conduct single-phase polymer flooding experiments on the designed chips to understand how polymer-rock interactions impact polymer transport behavior in rocks. These experiments allow for polymer transport visualization at the molecule-scale owing to the use of polymer tagging and single-molecule tracking techniques. This study presents, for the first time, a direct visualization of polymer retention mechanisms in porous media. We identified three mechanisms leading to polymer retention: adsorption, mechanical entrapment, and hydrodynamic retention. Polymer adsorption on the chip surfaces resulted in flow conductivity reduction in specific pathways and complete blockage in others, inducing alterations in the flowpaths. This mechanism occurred almost instantaneously during the first minutes of flow then, dramatically diminished as adsorption was satisfied. In addition to static adsorption, flow-induced adsorption (entrapment) was also distinguished from the binding of flowing polymer molecules to the already adsorbed polymer layer. Evidence of polymer desorption was observed, which consents with the presumed reversibility character of polymer retention mechanisms. The narrowest channels along with the reduced area due to adsorption, created favorable conditions for polymer entrapment. Both mechanical and hydrodynamic trapped polymers were successfully imaged. These phenomena led to polymer clogging of the porous network, which is one of the major concerns for operational aspects of polymer flooding processes. Better understanding and quantification of polymer retention in porous media can help to make better decisions related to field-scale implementations of polymer-based processes in the subsurface. In this study, we used a soft-lithography fabrication technique and single-molecule imaging, to show, for the first time, polymer transport insights at the molecule- and pore-scales. This approach opens a new avenue to improve our understanding of the first principals of polymer retention while flowing through porous media.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3