An Analysis of Numerically Induced Pulses in Simulations of Low-Salinity Waterflooding and Their Reduction by Flow Upscaling

Author:

Al-Ibadi Hasan1,Stephen Karl D.1,Mackay Eric1

Affiliation:

1. Heriot-Watt University

Abstract

SummaryNumerical fidelity is required when using simulations to predict enhanced-oil-recovery (EOR) processes. In this paper, we investigate the conditions that lead to numerical errors when simulating low-salinity (LS) waterflooding (LSWF). We also examine how to achieve more accurate simulation results by scaling up the flow behavior in an effective manner.An implicit finite-difference numerical solver was used to simulate LSWF. The accuracy of the numerical solution has been examined as a function of changing the length of the grid cell and the timestep. Previously we have shown that numerical dispersion induces a physical retardation such that the LS front slows down while the formation water front speeds up. We also report for the first time that pulses can be generated as numerical artifacts in coarsely gridded simulations of LSWF. These effects reflect the interaction of dispersion, the effective-salinity range, and the use of upstream weighting during calculation, and can corrupt predictions of flow behavior.The effect of the size of the timestep was analyzed with respect to the Courant condition, traditionally related to explicit numerical schemes and also numerical stability conditions. We also investigated some of the nonlinear elements of the simulation model, such as the differences between the concentrations of connate water salinity and the injected brine, effective-salinity-concentration range, and the net mobility change on fluids through changing the salinity. We report that to avoid pulses it is necessary, but not sufficient, to meet the Courant condition relating timestep size to cell size. We have also developed two approaches that can be used to scale up simulations of LSWF and tackle the numerical problems. The first method is dependent on a mathematical relationship between the fractional flow, effective-salinity range, and the Péclet number and treats the effective-salinity range as a pseudofunction. The second method establishes an unconventional proxy method equivalent to pseudorelative permeabilities. A single table of pseudorelative permeability data can be used for a waterflood instead of two tables, as is usual for LSWF. This is a novel approach that removes the need for relative permeability interpolation during the simulation.Overall, by avoiding numerical errors, we help engineers to more efficiently and accurately assess the potential for improving oil recovery using LSWF and thus optimize field development. We also avoid the numerical pulses inherent in the traditional LSWF model.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3