Ultra Heavy Oil Production Experience in China

Author:

Zhu Jianying1,Shi Changlin1,Dong Changrun2,Hu Guoheng3,Wang Tianyou3,Yao Yongjun3,Zhang Junbo4

Affiliation:

1. CNOOC

2. Antonoil

3. PetroChina

4. Sinopec

Abstract

Abstract Production of ultra-heavy oils is economically and technically challenging due to the very high viscosity of heavy oils, sharp viscosity increase over a small temperature drop and high operating costs. Reservoir oil can't even be mobilized by steam stimulation only due to inadequate reservoir energy. Even after the oils flow to the wellbore, the viscosity of the oils may exponentially increase when transported towards the wellhead due to the geothermal temperature decrease. The liquid oil could naturally turn into solid bitumen at any point where the temperature drops. The longer the travelling distance to surface for the oil, the bigger temperature drop, the greater the oil viscosity, and the more severe production challenges. This paper presents the challenges associated with the production of ultra heavy oil in deep reservoirs in China. Operational difficulties widely exist in mobilization of in-situ oil, flow of oil from formation to wellbore, lifting of produced fluids from wellbore to surface, and surface processing and transportation of hydrocarbons. The sandstone reservoirs, sitting at a depth from 1600 to 1800 meters and having no support of any aquifer, contain approximate 4 million metric tons of 1.02∼1.05g/cm3 heavy oil reserve. The oil-bearing formations have an average porosity of 27∼29%, an average permeability of 1 Darcy and an original reservoir pressure of 16∼17.5MPa. The oil viscosity at reservoir conditions (80°C) ranges from 6000 to 10000 centipoises (cP). Always keeping oil at a relatively low viscosity for feasible pumping is the theme topic with the thermal oil production in this type of reservoirs. To find fit-for-purpose solutions, challenges had been analyzed in details for each part of the entire oil producing process covering the oil flow from the reservoirs to surface. The oil viscosity change with temperatures, the impact of oil viscosity reducers on the mobility of oil compounded with steam stimulation and CO2 injection for providing the initial energy to mobilize the heated oil, optimization of horizontal wells, screening of suitable wellbore lifting technology including wellbore heating and insulation and suitable chemicals for reducing the oil-water interfacial tension, and the steam stimulation optimization had been studied carefully prior to well drilling. So far, 26 horizontal wells were drilled with an average of 130 meters horizontal section. Production data showed daily liquid rates at 800 tons at 55% water cut for all 26 producers after one year. The average peak oil production, the average cycle oil production capacity, the average cycle cumulative oil production of a single well was 25 metric tons per day, 14 metric tons per day and 2130 metric tons respectively. The average oil-steam ratio was 1.46 with a maximum oil-steam ratio of 5.26. The technologies discussed in this paper had been proved effective to produce ultra heavy oil from 1600 to 1800 meters formations with oil viscosity at 50°C conditions ranging from 180,000 to 260,000 cP.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3