Analyzing the Well-Interference Phenomenon in the Eagle Ford Shale/Austin Chalk Production System With a Comprehensive Compositional Reservoir Model

Author:

Tang Hewei1,Yan Bicheng1,Chai Zhi2,Zuo Lihua2,Killough John2,Sun Zhuang3

Affiliation:

1. (currently with Sanchez Oil and Gas)

2. Texas A&M University

3. University of Texas at Austin

Abstract

Summary Well interference is a common phenomenon in unconventional-reservoir development. The completion and production of infill wells can lead to either positive or negative well-interference impacts on the existing producers. Many researchers have investigated the well-interference phenomenon; however, few of them attempted to apply rigorous simulation methods to analyze both positive and negative well-interference effects, especially in two different formations. In this work, we develop a comprehensive compositional reservoir model to study the well-interference phenomena in the Eagle Ford Shale/Austin Chalk production system. The reservoir model considers capillary pressure in the vapor/liquid-equilibrium (VLE) equation (nanopore-confinement effect), and applies the embedded discrete-fracture model (EDFM) for dynamic fracture modeling. We also include a multisegment-well model to characterize the wellbore-crossflow effect introduced by fracture hits. The simulation results indicate that negative well-interference impact is much more common in the production system. With a smaller permeability difference, the hydraulic-fracturing effect can lead to a positive well-interference period of several hundred days. The nanopore-confinement effect in the Eagle Ford Shale can contribute to the negative well-interference effect. We also analyze the impact of other factors such as initial reservoir pressure, matrix porosity, initial water saturation, and the natural-fracture system on the well performance. Our work provides valuable insights into dynamic well performance under the impact of well interference.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3