Numerical Simulation of Gas Production From Tight, Ultratight and Shale Gas Reservoirs: Flow Regimes and Geomechanical Effects

Author:

Moghaddam Rasoul Nazari1,Aghabozorgi Shokoufeh2,Foroozesh Jalal1

Affiliation:

1. Heriot Watt University

2. University of Tehran

Abstract

Abstract Production from unconventional gas resources (UGRs) has received great attentions because of their large reserves as well as technical advances in developing these reservoirs. The fluid flow in ultralow permeability porous media cannot be considered in the range of conventional Darcy flow as it undergoes a transition from a Darcy regime to slip flow and free molecule flow regimes. Understanding fluid flow inside the matrix and how the matrix permeability evolves over depletion are among the major challenges to unconventional gas reservoirs characterization. Considering different flow regimes in UGRs and time dependent permeability during the production of reservoir, the applicability of the availabe numerical simulatior to predict the production from unconventional reservoirs is questionable. In this paper, a numerical approach is proposed for simulation of gas production of UGRs including geomechanical effect, slippage effect and non-Darcy flow. In this simulation, gas production is calculated using a pseudo-pressure integral for well inflow performance and material-balance for reservoir depletion. The numerical approach has been verified by comparing with the results of fine-grid compositional simulation for a typical conventional gas reservoir. The pseudo pressure-integral has been extended to include the geomechanical effect and time dependent matrix permeability. The flow regime is distinguished by Knudsen number for each regions of the reservoir during the reservoir depletion. According to the numerical results, the matrix permeability changes depending on the flow regime determined by Knudsen dimensionless number. Slip flow and Knudsen diffusion which are dependent on net pore pressure can play important roles in the gas production. Higher-than–expected matrix permeability becomes more highlighted when the permeability of the matrix decreases and dimensionless Knudsen number is higher than 0.1. This higher permeability enhances the gas production. On the other side, the matrix permeability decrease as the net overburden stress increases during the production life of the reservoirs. This decrease in matrix permeability clearly decreases the rate of gas production. The presented numerical simulation evaluates the significance of different flow regimes, time dependent permeability and geomechnical effect in production from UGRs. It also offers a rapid and simple tool for prediction of gas deliverability of UGRs well.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3