Interfacial Effects in Immiscible Liquid-Liquid Displacement in Porous Media

Author:

Mungan Necmettin1

Affiliation:

1. Sinclair Oil And Gas Co.

Abstract

Abstract A study was made of the effects of wettability and interfacial tension the immiscible displacement of a liquid by another liquid for porous media. The influence of viscosity ratio was also investigated. Porous media used were polytetrafluoroethylene (TFE) cores prepared by compressing TFE powder under different pressures. It is shown that displacement of a wetting by a nonwetting liquid is always less efficient than the displacement of a nonwetting by a wetting fluid, all other things being equal. In the former case, the recovery efficiency can be increased substantially by either reducing the interfacial tension or increasing the viscosity of the displacing fluid. A qualitative discussion is given on the implications of this work to the recovery of crude oil by waterflooding. Introduction The high cost of oil exploration and new recovery schemes makes it imperative that waterflooding be conducted under conditions favoring most efficient oil recovery. To improve oil recovery by waterflooding, it is essential that the role played by interfacial forces in the entrapment of residual oil be studied and understood. Interfacial phenomena in natural rock, connate water and crude oil systems are very complicated because of the complexity of the natural liquids found in petroleum reservoirs, because of our inability to adequately describe the geometrical structure of the porous media and because of a lack of understanding of physical and chemical interactions between the liquids and surface of the pores. The problem becomes further complicated when one tries to elucidate the role of interfacial phenomena in fluid flow. Numerous studies of the displacement of oil by water under different interfacial tension or wettability conditions have been made. These studies have been performed in silica, alundum or sandstone systems using water and paraffin oil and also some surface active material to control the interfacial tension or and the contact angle. Unfortunately, the high energies of various interfaces involved favor adsorption and orientation of the surface active material at the intrafaces. Also the surface active material concentration at the interfaces exceeds that in the bulk of the liquid phases. Such surface excess may cause the surfactant distribution, the contact angle and the interfacial tension to differ from their measured static equilibrium values and makes interpretation of the displacement experiments difficult. Furthermore, as changes in also lead to changes in cos, the role played individually by one of these parameters in the displacement becomes obscured by the effect of the other. To circumvent these difficulties, a low surface energy solid and true solutions or pure liquids should be used. Use of a low surface energy solid minimizes adsorption and orientation effects at the solid-liquid interfaces. By controlling and cos through use of selected pairs of pure liquids or true solutions rather than by surfactants, the adsorption effects at liquid-liquid interfaces are eliminated. In the present study TFE cores were used as me porous media. Liquids used were water sucrose solutions, paraffin oils and benzyl, n-butyl and isobutyl alcohols. The interfacial tension was varied from 40 to 1.1 dynes/cm by suitably choosing the liquid pair. A surface above material was added to the water-oil system only in the case where interfacial tension of 0.5 dynes/ cm was desired. No precise changes of cos were attempted. However, either the displaced or the displacing liquid could be made the one which preferentially wets the TFE surface. Using sucrose solutions and blends of paraffin oils proved to be a convenient way of changing the viscosity ratio between the displaced and displacing liquids. The present investigation examines the effect of interfacial tension, wettability and viscosity ratio on the immiscible liquid-liquid displacement from porous media. SPEJ P. 217ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3