Low Tension Gas Process in High Salinity and Low Permeability Reservoirs

Author:

Das Alolika1,Nguyen Nhut1,Alkindi Abdullah2,Farajzadeh Rouhi3,Azri Nasser2,Southwick Jeffrey4,Vincent-Bonnieu Sebastien4,Nguyen Quoc P.1

Affiliation:

1. The University of Texas at Austin

2. PDO

3. Shell Technology Oman

4. Shell Global Solutions Intl. B.V.

Abstract

Abstract Chemical enhanced oil recovery (EOR) in carbonate reservoirs has always been technically and economically challenging. Conventional Alkaline-Surfactant-Polymer (ASP) flooding has limited application in low permeability (2-20 mD) and high salinity formations (~200,000 ppm TDS) with a large concentration of divalent cations. Also injectivity into such low permeability reservoirs can be a significant problem with polymer solutions. The process of low tension gas (LTG) in tight carbonates has exhibited good microscopic displacement and mobility control. It combines interfacial tension (IFT) reduction with improved mobility control by in-situ generation of foam in low-permeable heterogeneous formations. This process has been tested in the lab for a Middle Eastern carbonate reservoir, which is the subject of this paper. This strategy has been tested through either co-injection or alternating injection of slug/drive surfactant solution and gas (CO2, N2, or hydrocarbon) at low foam quality (high water content). A successful surfactant screening was performed to select the optimum surfactant formula that exhibits ultra-low IFT, good aqueous stability, and low microemulsion viscosity. The formulation allows tailoring of optimal salinity for ultra-low oil-water IFT to the variation of formation and produced water salinity. Core flood experiments have been performed, which demonstrated favorable mobilization and displacement of residual oil. Tertiary recoveries of up to 85% on remaining oil were achieved for cores with permeability less than 10 mD. An innovative experimental method was also developed to achieve high initial oil saturation in tight rocks.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3