Gelation Kinetics and Performance Evaluation of an Organically Crosslinked Gel at High Temperature and Pressure

Author:

Al-Muntasheri G. A.1,Nasr-El-Din H. A.1,Zitha P. L. J.1

Affiliation:

1. EXPEC Advanced Research Center, Saudi Aramco

Abstract

Summary Organically crosslinked gels have been used to control water production in high temperature applications. These chemical systems are based on the crosslinking of a polyacrylamide-based polymer/copolymer with an organic crosslinker. Polyethyleneimine (PEI) has been used as an organic crosslinker for polyacrylamide-based copolymers to provide thermally stable gels. Literature reported that PEI can form aqueous gels with polyacrylamide (PAM) at room temperature. In this paper, we show for the first time the possibility of crosslinking polyacrylamide with PEI at temperatures up to 140°C (285°F) and pressures up to 30 bars (435 psi). This paper reports data both in bulk and in porous media. The gelation time of the PAM crosslinked with PEI at high temperatures up to 140°C (285°F) and pressures up to 435 psi (30 bars) was measured. The effects of polymer concentration, crosslinker concentration, temperature, salinity, initial pH value, and the initial degree of hydrolysis of the polymer on the gelation time were examined in detail. All measurements were conducted in the steady shear mode. 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR) was used to relate the gelation time to changes in the structure of the polymer and hence explain the variation in the gelation time in terms of the gelling system chemistry. In bulk, thermally stable gels were obtained by crosslinking PAM with PEI at 130°C (266°F) for at least 8 weeks. The performance of the PAM/PEI system in sandstone cores at a temperature of 90°C (194°F) and pressure drops of 68.95 bars (1,000 psi) was examined. The system was found to be stable for 3 weeks, where the permeability was reduced by a factor of 100%.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3