A Study on the Chemo-Mechanical Alteration of Cement in CO2 Storage Sites

Author:

Bagheri Mohammadreza1,Shariatipour Seyed M.1,Ganjian Eshmaiel2

Affiliation:

1. Research Centre for Fluid and Complex Systems, Coventry University

2. School of Energy, Construction and Environment, Built & Natural Environment Research Centre, Coventry University

Abstract

Abstract The fluid pressure, the stress due to the column of the cement in the annulus of oil and gas wells, and the radial pressure exerted on the cement sheath from the surrounding geological layers all affect the integrity of the cement sheath. This paper studies the impact of CO2-bearing fluids, coupled with the geomechanical alterations within the cement matrix on its integrity. These geochemical and geomechanical alterations within the cement matrix have been coupled to determine the cement lifespan. Two main scenarios including radial cracking and radial compaction, were assumed in order to investigate the behaviour of the cement matrix exposed to CO2-bearing fluids over long periods. If the radial pressure from the surrounding rocks on the cement matrix overcomes the strength of the degraded layers within the cement matrix, cement failure can be postponed, while on the other hand, high vertical stress on the cement matrix in the absence of a proper radial pressure can lead to a reduction in the cement lifespan. The radial cracking process generates local areas of high permeability around the outer face of the cement sheath. Our simulation results show at the shallower depths the cement matrices resist CO2-bearing fluids more and this delays exponentially the travel time of CO2-bearing fluids towards the Earth's surface. This is based on the evolution of CO2 gas from the aqueous phase due to the reduction in the fluid pressure at shallower depths, and consumption of CO2 in the reactions which occur at the deeper locations.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3