Casing Centralization and Pipe Movement in Cementing Operations for Improved Displacement Efficiency

Author:

Guzman Jose1,Mavares Francisco2,Monasterios Eloy3,Massirrubi Luis3

Affiliation:

1. Halliburton

2. Rosneft

3. Petromonagas

Abstract

Abstract Casing centralization and reciprocation during a cementing operation can help improve the efficiency of annular mud displacement and provide a basis for analyzing the percentage of mud displacement efficiency. This information is necessary when developing a mitigation plan for any cementing operation's risk assessment when centralization and pipe movement are considered as operational variables. A state-of-the-art, three-dimensional (3D) finite displacement efficiency simulator analyzes the percentage of mud displacement efficiency when these four main possible scenarios are considered: low, medium, and high centralization and casing reciprocation during the cementing operation. This paper discusses three case studies validated by a risk assessment process developed during the cementing job design stage in which higher standoff and casing reciprocation suggest improved mud displacement efficiency and low fluid channeling when the cementing operation is finished. Cement bond log (CBL) results are discussed and shared when high standoff and casing reciprocation scenarios are considered. Results of this study include the following observations and conclusions: Casing reciprocation helps improve displacement efficiency, which can provide improved cement bonding.If casing reciprocation movement is not possible, high casing centralization standoff can be an effective design technique because it can be used to enhance mud displacement efficiency in cementing operations. Wellbore stability is not compromised by equivalent circulating density (ECD) increments resulting from the reduction of annular clear space when using centralizers.Design risk assessment should include a comparative scenario analysis to mitigate the potential risk of poor mud displacement efficiency when considering casing centralization with medium to high standoff and casing reciprocation.At some point, casing reciprocation will not be a factor of improvement for mud displacement efficiency when sufficient standoff is considered for cementing operation designs. This scenario can help mitigate any likelihood of poor mud displacement efficiency if the casing is not reciprocated because of operational factors.Even though high casing standoff yields high percent displacement efficiency, it is recommended to follow the primary cementing operation's field practices as discussed. A comprehensive practical analysis to prepare a cementing risk assessment included in an operation's program is reviewed. It considers low and high casing centralization as well as pipe movement as variables to help improve cement placement.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3