Sweep-Improvement Options for the Daqing Oil Field

Author:

Wang Dongmei1,Han Peihui1,Shao Zhenbo1,Hou Weihong1,Seright R. S.2

Affiliation:

1. Exploration and Development Research Institute of Daqing Oil Field Company, PetroChina

2. New Mexico Petroleum Recovery Research Center

Abstract

Summary This paper investigates the potential of various approaches for improving sweep in parts of the Daqing oil field that have been enhanced-oil-recovery (EOR) targets. Our studies indicated that the polymer flood should have provided excellent sweep throughout the vast majority of the patterns under consideration. However, because alkaline/surfactant/polymer (ASP) flooding is being considered to increase recovery efficiency from the Daqing oil field, mobility control and sweep improvement will be especially important and challenging during implementation of any future ASP process. Fractures were present in a number of Daqing wells (both injectors and producers). Because the fractures were narrow and far from the wellbore, severe channeling did not occur. On the contrary, fractures near the wellbore aided reservoir sweep. Nearwellbore fractures increased the injectivity index substantially during the injection of polymer solutions and increased oil-productivity index in the production wells. These observations may be valuable during implementation of future floods where very-low-mobility chemical (i.e., ASP) banks must be injected to maintain mobility control. Several modes of polymer degradation were considered, with mechanical (shear) degradation being of greatest concern. Appropriate use of near-wellbore fractures may mitigate mechanical degradation effectively, as well as improving injectivity. Several new polymers show potential for cost-effective improvements at Daqing. Increased polymer concentration was also considered. A number of other approaches are (or have been) under investigation, including colloidal dispersion gels, foams, ASP foams, steam, microbes, and polymer solutions prepared with reduced salinity.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3