Slickline Deployed Fibre Optic Cable Provides First Ever Production Profile For High Temperature Gas Well

Author:

Berry S.1,Dirya D.2,Cowie G.2,Hooker A. R.2,Innes R.2,Gray R.2

Affiliation:

1. M Webster Expro Group Ltd.

2. TotalEnergies E&P UK Ltd

Abstract

Abstract Distributed Fiber Optic Sensing (DFOS) allowed us to continuously gather flow profile information from a high-temperature high-rate gas well. The objective of this case study is to demonstrate that Distributed Temperature and Distributed Acoustic data, thermal inversion modelling can be used to produce a Production Flow Profile in an environment where conventional production logging was not possible. Cerberus modelling was performed, concluding there was a risk of tool lift whereby a conventional production logging tool string is deployed during flowing states. Therefore, a 0.181" diameter fiber slickline was selected to allow a continuous measurement over the accessible perforation interval at multiple rates without the risk of tool lift. A program consisting of a memory production log, run by standard slickline cable to acquire a shut-in profile looking for potential crossflow was followed by a DFOS run to gather DAS and DTS data during shut-in and flowing rates of 30 MMSCF/Day and 60MMSCF/Day. Near real-time DTS data was analyzed to aid in the evaluation of temperature stability at each rate change, and DAS data was processed at the wellsite to enable transmission to and analysis onshore. DFOS data was successfully acquired and processed at wellsite and transmitted to town allowing for monitoring of data quality and decision making during the intervention. A complete suite of DAS/DTS data was acquired over the perforated interval at multiple flow rates, facilitated by monitoring near real-time transient behavior which aided in decision making for rate changes. Thermal inversion modelling and DAS analysis were performed, providing evidence of crossflow during shut-in and variations of flow allocation during the differing flow rates. It was observed that surveying at lower flow rates would have provided a different flow profile compared with normal operating rates. As a result of deploying DFOS, data could be acquired at more realistic rates. Through performing thermal inversion of the DTS data and analysis of the DAS data a more accurate flow profile was achieved. This is the first profile to be acquired in the field for use in reservoir simulation and production modelling. This will result in more accurate reservoir and well optimization. This is a layered sandstone reservoir with a two-thirds production drop since start-up in this well. Approximately 80% of production was produced from one zone and surveillance to plan remedial action was essential to maintain economic production.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3