Multiscale Pore Structure Evolution of Different Rank Coals Induced by Chelating Agent Intrusion

Author:

Chen Shuya1,Dang Zheng2,Deng Chuanjie1,Chen Zexin1,Tan Shuhao1ORCID,Yang Xianyu3ORCID,Cai Jihua4ORCID,Chen Zhangxin5ORCID

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan

2. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Wuhan

3. Faculty of Engineering, China University of Geosciences, Wuhan; Shenzhen Research Institute, China University of Geosciences, Shenzhen (Corresponding author)

4. Faculty of Engineering, China University of Geosciences, Wuhan (Corresponding author)

5. Eastern Institute of Technology; Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary

Abstract

Summary China’s coalbed methane (CBM) reservoirs are characterized by low permeability (<1 md). Stimulation with conventional acids is facing the problems of secondary precipitation, high corrosion rates, and fines migration. Chelating agent intrusion was proposed as a promising alternative for conventional acids, while the pore structure evolution induced by it needs to be further clarified. In this study, coal samples with three different ranks were selected and treated with L-glutamic acid N, N-diacetic acid (GLDA). Low-temperature Ar and N2 adsorption tests, mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) analyses were applied to investigate nanoscale to macroscale pore structure changes. X-ray fluorescence (XRF) spectroscopy tests were conducted to determine the mineralogical change of coal. The results show that chelating agent intrusion can widen fracture width, connect micropores, and create void space in macropores by dissolving carbonate minerals, while the nanoscale pore volumes (PVs) showed a slight decrease due to clay minerals collapse. The fractal dimensions Dm calculated by the MIP results of lignite, bituminous coal, and anthracite coal decreased by 0.2735, 0.1734, and 0.1444, respectively. It is indicated that a pore structure with a diameter of >100 nm of the coal became more unified, which favors the seepage of gas/water. The chelating agent intrusion shows a significant effect on lignite, followed by bituminous and anthracite coal. However, the metal element reduction rate of anthracite coal presents the highest, followed by bituminous coal and lignite. There can be a risk that a long intrusion time would loosen the skeleton of lignite, leading to further reservoir damage. Therefore, bituminous and anthracite coal samples are preferred, as the skeletons of higher-rank coals are more compact. These research findings introduced a potential stimulation method for enhancing CBM recovery and provided references for field application.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3