Design of Floating Vessel Drilling Riser

Author:

Fischer William

Abstract

FISCHER, WILLIAM, STANDARD OIL CO. OF CALIFORNIA, LA HABRA, CALIF. LUDWIG, MILTON, SAN FRANCISCO, CALIF. Abstract An offshore drilling riser, necessary to return drilling fluid to the drilling vessel and to guide the rotating drill pipe, will fail in water depths greater than 200 to 300 ft if it is not partially or completely supported by a tensioning device at the top. As water depth increases, substantial bottom tension is also necessary and the connector at the bottom must be designed for axial tension unless equivalent weights are provided just above the bottom connector. The differential equation for deflection of a riser subjected to static forces is solved and generalized design curves for calculation of required minimum top tension are presented. An analysis of riser response to cyclic wave forces and vessel motion is not included but approximate solutions indicate that dynamic effects, for the optimum riser design of smallest practical diameter in water depths of 60 to 1,000 ft and under moderate sea and vessel motion conditions, are small compared to static effects. Thus, fulfillment of static requirements will lead to a satisfactory design that provides an economic solution to the most difficult problem associated with o fish ore drilling in deep water. Introduction The simplified solution for riser design offered in this paper is based on static force considerations only, and these over a range of water depths, sea conditions and vessel motion conditions within which they will control. Within such limitations, dynamic forces will be small by comparison. This approach to riser design is intended to serve as an interim design guide pending publication of such papers as will include both static and dynamic considerations. A typical layout for subsea drilling from a floating vessel is shown on Fig. I. ‘The drilling riser, reduced to bare essentials, is simply a long tubular column to return the drilling fluid to the ship and, secondarily, to guide the rotating drill pipe. This column is axially loaded by its own weight and, with no vertical support at the top, must ultimately buckle and fail when its length becomes sufficiently great, even though there is no lateral ocean current force and the ship is directly over the hole. For example, the critical buckling length in feet for a riser with zero tension at the top is 2.75 (EI/w)(1/3) if the top and bottom connections are angularly flexible, and 3.75 (EI/w)(1/3) if the top connection is angularly flexible and the bottom connection is angularly stiff. With a flexible bottom connector, this critical length is 247 ft for a 16-in. diameter by 0.438-in. wall riser which contains 120 lb/cu ft drilling fluid and free-standing 45-lb/ft casing. Increasing the wall thickness to 0.750 in. would increase the critical length slightly to 270 ft, and increasing the diameter to 24 in. for 0.438-in. wall thickness would increase the critical length to only 310 ft. Practically, there are ocean currents and the vessel does move off location so that bending of an unsupported riser would become excessive at lengths somewhat less than these critical buckling lengths. JPT P. 272ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3