Study on Composite Rock-Breaking Mechanism of Ultrahigh-Pressure Water Jet–PDC Cutter

Author:

Cai Can1ORCID,Cao Wenyang2,Yang Xianpeng3,Zhang Pei4ORCID,Zeng Lang2,Zhou Shengwen2

Affiliation:

1. High Pressure Jet Theory and Application Technology Laboratory, School of Mechanical Engineering, Southwest Petroleum University; Key Laboratory of Oil and Gas Equipment, Ministry of Education; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University (Corresponding author)

2. High Pressure Jet Theory and Application Technology Laboratory, School of Mechanical Engineering, Southwest Petroleum University

3. High Pressure Jet Theory and Application Technology Laboratory, School of Mechanical Engineering, Southwest Petroleum University (Corresponding author)

4. Sichuan Jiuzhou Electric Group Co., Ltd.

Abstract

Summary The drilling industry is paying increasing attention to deep and ultradeep wells because of the gradual decline and depletion of recoverable resources on the shallow surface. However, the difficulty of conventional mechanical rock-breaking grows significantly with increasing drilling depth. It has been found that the effect of a high-pressure water jet combined with a polycrystalline diamond compact (PDC) cutter is significant and can greatly increase the efficacy of rock breaking. A composite rock-breaking experimental device with a high-pressure jet was designed to carry out composite rock-breaking experiments. Meanwhile, a composite rock-breaking numerical model of high-pressure water jet-PDC cutter was created by smoothed particle hydrodynamics/finite element method (SPH/FEM). After verifying the reliability of the numerical model through experiments, the key factors, including rock stress field, cutting force, and jet field, were extracted to analyze the composite rock-breaking mechanism. The results show that the enhancing effect of jet impact on rock breaking is mainly reflected in three aspects: (1) The high-pressure water jet can create a groove and crater on the rock surface, effectively unloading the rock stress at the bottom of the well and increasing the area of rock damage; (2) PDC cutter vibration can be efficiently reduced with high-pressure jet; and (3) the rock debris in front of the cutter is cleaned in time, avoiding the waste of energy caused by the secondary cutting and reducing the temperature rise of the PDC cutter. Besides, it has been investigated how parameters like jet pressure, nozzle diameter, impact distance, and cutting depth influence the effect of jet rock breaking. The findings indicate that the best rock-breaking efficiency and economy occur at jet pressures of 30–40 MPa. Correspondingly, in terms of nozzle angle, nozzle diameter, and impact distance, the ideal ranges are 60°, 1.0–1.5 mm, and 10 mm, respectively, wherein the ideal impact distance is approximately 10 times the nozzle diameter. This research is critical for the advancement of high-pressure jet drilling technology and the design of supporting drill bits.

Publisher

Society of Petroleum Engineers (SPE)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3